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Abstract
This paper addresses the use of object-oriented programming techniques for developing simulation
codes. We will argue why such modern programming techniques support the construction of flexible,
maintainable and user-friendly software libraries for partial differential equations (PDEs). In particular,
we will show some programming advantages associated with parallelizing object-oriented PDE software.
First, parallelism can be incorporated into existing object-oriented PDE software libraries in a simple and
flexible way. Second, object-oriented programming also simplifies the user effort needed for developing a
parallel simulation code for a given PDE. The concrete programming issues will be demonstrated within
the framework of Diffpack [1, 2], which is an object-oriented environment for scientific computing, with
emphasis on the numerical solution of PDEs. The described programming paradigm and tools have been
applied to numerous computational mechanics applications, including thermo-elasticity, incompressible
viscous flow, and heat transfer.
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1 Introduction

Non-numerical applications are nowadays often created using object-oriented programming techniques
and languages like C++ and Java, which support this style of program development. The great advantage
with object-oriented programming is information hiding and the ability to work with high-level abstrac-
tions. For a particular application area, one normally develops class libraries that offer the application
programmer a high-level interface to problem solving. Each class typically contains data structures and
member functions operating on the data structures. Very often the details of the data structures are hidden
from a user of the class; the manipulation of the data can only take place through some high-level public
member functions of the class. The application programmer declares objects of the library classes and
develops the program as instantiation of objects and calls to the objects’ public member functions.

Since the details of working with data structures can to a large extent be hidden inside the objects,
the abstraction level tends to be significantly higher in object-oriented programs than in the traditional
procedural programs. For example, there is no need to shuffle long lists of primitive variables back and
forth between subroutines in object-oriented programs. It is sufficient to send objects, where each object
may contain lots of variables. Adding a new variable is hence easy; just declare it as a data member in a
class. The rest of the code will normally not notice such an extension.

Object-oriented programming is more than collecting data and functions inside classes. Classes can be
related to each other through inheritance and organized as class hierarchies. This makes it possible to
access different types of classes through a common (base class) interface. For example, one can have dis-
tinct classes for different finite element types, but access all of them through a generic element interface.
This also helps to hide information and increase the abstraction level.

During the last decade, object-oriented programming has become more and more popular in the scientific
computing community [3, 4, 5, 6, 7]. This is particularly true for the numerical solution of PDEs. One
reason is that many components of a general numerical algorithm can be formulated in a generic fashion,
independent of the specific PDEs. We can thus implement the generic components of the numerical al-
gorithm as classes. A collection of such classes naturally forms a PDE software library. Object-oriented
programming also enables organizing similar numerical methods that share common features into a class
hierarchy. This is very advantageous for code maintenance and extension. Therefore, object-oriented
programming strongly promotes code re-use and greatly increases human efficiency. For example, com-
putational mechanics codes can utilize well-tested PDE software developed for other application areas.
Examples of existing object-oriented PDE software libraries are Cogito [8], Diffpack [2], Overture [9],
ParallelFEMCore [10], and PETSc [11], just to mention a few. When writing a specific simulation code,
the coding work of a programmer, who uses object-oriented PDE software libraries, is normally reduced
to designing a few small-size classes for treating the problem-specific details. The main body of compu-
tation is done by using the generic functionality of the PDE libraries.

Computing platforms with multiple processors are an indispensable tool for running large-scale simu-
lations. Such parallel computers require specially adapted parallel software. In respect of parallel pro-
gramming, message-passing has established itself as the most versatile paradigm for developing portable
parallel simulation codes. Despite the widely used MPI standard [12], writing parallel simulation codes
is still a demanding task. Due to the need of inserting MPI routines into serial codes, it is not uncom-
mon that serial PDE software libraries undergo extensive re-programming to incorporate parallelism.
However, if object-oriented programming is applied appropriately, the extra programming work for par-
allelization can be limited. It is in fact possible to collect all the parallel computing specific codes into
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a small-size object-oriented parallel “toolbox”. Thus, for an existing serial object-oriented PDE library,
it suffices to only incorporate an interface to the toolbox. The modification of the serial library is very
small, and all its serial functionality remains intact. The result is that parallelization of the standard linear
algebra operations can be enabled (almost) automatically. For more advanced parallel numerical algo-
rithms, such as domain decomposition (DD) methods [13, 14, 15], object orientation can help to produce
user-friendly implementation frameworks. This will be exemplified in Section 4.

Overview of the Paper. In Section 2, we first explain why object-oriented programming is advantageous
for developing PDE software libraries. This is followed shortly by a brief introduction to some important
classes of Diffpack, which can be used to build serial PDE solvers. We turn our attention to parallelizing
PDE solvers in Section 3, where we explain two parallelization approaches. Then, we present in Section 4
the object-oriented implementation of the two parallelization approaches within Diffpack. Illustrations
of the two approaches for a nonlinear heat conduction problem are given in Section 5. Finally, we present
some concluding remarks in Section 6.

2 Generic PDE Software and Diffpack

2.1 Components of a General Numerical Algorithm

A good design of a PDE software library relies on the dissection of general numerical algorithms into
generic components. We start with a list of such components that are of interest for the topic in the present
paper. Let us consider a time-dependent nonlinear PDE, e.g., the following nonlinear heat conduction
equation: ��������
	���
���� ��� 	 ����� ������� �"!#� �%$ &('

(1)

Although the above nonlinear PDE is very simple in its mathematical form, its general numerical algo-
rithm, consisting of the following main components, is also applicable for other more complex PDEs.

1. A spatial computational grid ) .

2. A time-stepping scheme that discretizes the PDE in the temporal direction, e.g.,�+*�,-�+*/.1023� ��	��546��� � * � 	 � */7 � (2)

where the superscript 8 denotes the number of time levels.

3. At each time level, a spatial discretization of (2) on ) , resulting in a system of nonlinear algebra
equations: 9

�;: * � � &(� (3)

where

9
�<�;= 0 � =5> �?'?'?'@� =�A � and : * �<� � * 0 �B� *> �?'?'?'C�B� *A � is the solution vector, with D being the

number of unknowns.

4. At each time level, a nonlinear system solver for (3), which generates, for an initial guess : */E F , a
sequence of approximate solutions: : *GEH0 , : */E > , '?'?' until convergence at that time level.
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5. A linear system solver that is used to solve a linear system in the form ofIKJ ��L (4)

in each internal step of the above nonlinear system solver.

It should be noticed that the above general numerical algorithm should be supplemented with appropriate
initial and boundary conditions. In case of a linear PDE, component number 3 directly gives rise to a
system of linear equations, so component number 4 is not needed.

2.2 Generic PDE Software Using Object-Oriented Programming

In fact, all the components of the preceding numerical algorithm allow different choices.M Should we use finite differences, finite elements or finite volumes for the discretization in compo-
nent number 3?M What nonlinear solver should we use in component number 4? Possible choices are, e.g., succes-
sive substitution and Newton-Raphson.M What linear solver should we use in component number 5? Should we use a direct solver such as
Gauss elimination or an iterative solver such as preconditioned BiCGStab (see e.g. [16])?

In addition, the spatial grid ) should be compatible with the chosen discretization method, and we should
allow using other temporal discretization schemes (e.g., using the N -rule) in component number 2.

We remark that each of the components normally has a quite complex algorithmic structure and in-
volves many different parameters. In order to handle the consequent programming difficulties and build
a flexible PDE software library more efficiently, we can resort to object-oriented programming. First,
an abstract data type–class–can be designed for each generic component. The class embeds many of the
low-level details and provides a set of member functions as the algorithmic interface. Programming with
the generic classes mimics more closely the underlying numerics. Second, the use of class inheritance
and virtual member functions allows the construction of class hierarchies that comprise groups of numer-
ical methods with common functionality and similar algorithmic features. For example, a class named
LinEqSolver can be introduced as the generic representation of all the linear solvers for (4). The most
useful member function of class LinEqSolver should be solve, which takes objects representing

I
and L as input and produces an object for the solution vector

J
. The solve function needs only to be de-

clared as virtualwithout having a concrete implementation. Moreover, class LinEqSolver can derive
DirectSolver and IterativeSolver as two subclasses that represent the general direct and iterative
linear system solvers, respectively. Further down in the LinEqSolver hierarchy tree, we can implement
GaussElim as a subclass of DirectSolver and BiCGStab as a subclass of IterativeSolver. In
these two classes, the virtual member function solve should be re-implemented according to the numer-
ics. Other concrete linear system solvers can be implemented and incorporated into the LinEqSolver
hierarchy similarly. The result is that for other parts of the PDE library, it suffices to work with objects of
type LinEqSolver, whereas the choice of a concrete linear system solver can be delayed until runtime.
As a third point, the programming effort needed for writing a simulation code for a specific PDE using
the generic PDE library is quite limited. This is because the simulator is normally a subclass of some
generic class in the library. Most of the code needed in the simulator is inherited from the library, and the
programmer is required to just re-implement some problem-specific virtual member functions.
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2.3 Diffpack

Diffpack (see [1, 2]) is an object-oriented environment for scientific computing, with emphasis on the
numerical solution of PDEs. A collection of generic class libraries, written in the C++ programming lan-
guage, constitute the main content of Diffpack. In order for the readers to understand the implementation
issues about parallelizing Diffpack simulation codes in Sections 4 and 5, we give here a brief introduction
to Diffpack’s most important generic classes that are used for serial finite element computation.M Class GridFE represents a computational finite element grid.M Classes FieldFE and FieldsFE represent a scalar and a vector field, respectively. Internally, each

of the two class has a pointer to one GridFE object and array objects to hold nodal values. The
field classes offer, of course, member functions for interpolating the fields at an arbitrary point.M Class TimePrm provides the functionality needed for a time-stepping scheme.M Class NonLinEqSolver is a base class representing a generic nonlinear system solver. Two of its
subclasses are SuccessiveSubst and NewtonRaphson. To enable the use of NonLinEqSolver
in a simulator class, we have to first derive the simulator class as a subclass of the generic interface
class NonLinEqSolverUDC, where UDC stands for user-defined code. Then, inside the simulator
class we do the following three things:

1. Re-implement the virtual member function makeAndSolveLinearSystem that belongs to
class NonLinEqSolverUDC. This function carries out the work of the fourth and fifth com-
ponent mentioned in Section 2.1.

2. Instantiate and point to an object of a chosen subclass of NonLinEqSolver. We use, e.g.,
nlsolver as the name of the object pointer. The type of the pointer is NonLinEqSolver,
i.e., we hide the information about which iteration method we actually use.

3. Invoke nlsolver->solve() when (3) needs to be solved.M Class FEM is the generic class representation of all PDEs that are to be solved by the finite element
method. When treating a specific PDE, the user creates the simulator as a subclass of FEM and es-
sentially only implements the virtual member function integrands. This function is supposed to
calculate the contribution of one numerical integration point to the element matrix/vector, follow-
ing the finite element weak form of the specific PDE (see [2, Ch. 3.1]). For assembling the linear
system (4), the user normally just invokes the ready implemented function FEM::makeSystem,
which goes through all the elements one by one and calls integrands internally for each of the
numerical integration points. In case the problem at hand allows special optimizations of the as-
sembly process to take place, the makeSystem function can be re-implemented in an optimized
form in the simulator class.M Class LinEqAdmFE is a generic control class for solving a linear system in the form of (4). Class
LinEqAdmFE accesses the matrix

I
and right-hand side vector L through an internal pointer to an

object of type LinEqSystem. The other important internal pointer inside LinEqAdmFE points to
an object of type LinEqSolver. As mentioned in Section 2.2, the particular choice of the linear
solver needs only to be decided at runtime. The user can also easily control other issues such as
convergence monitoring and preconditioning through LinEqAdmFE. In a Diffpack program, all a
user needs to do is invoking LinEqAdmFE::solve.
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M Class DegFreeFE provides a mapping between the degrees of freedom of a field to the degrees of
freedom of a linear system.

In addition, there are two more issues worth mentioning. First, a class with name Handle(X) is a “smart”
pointer with internal reference counting functionality to objects of type X. These handles are used exten-
sively throughout the Diffpack libraries. Second, Diffpack has a flexible menu system tool for providing
values for diverse parameters needed for a simulation. The Diffpack programming standard demands
each class to contain a pair of member functions: define and scan. The define function determines
the “menu items” to appear in the menu system, whereas the scan function loads user-given menu an-
swers into the variables in the class. The “appearance” of a menu system interface can be chosen at run
time, either as a graphical user interface, a command-line interface, or simply commands stored in a file.

Solving a specific PDE is a matter of deriving a subclass of FEM, implementing the weak form in the
integrands function, declaring variables to hold physical and numerical parameters, initializing these
variables through the menu system, enforcing initial conditions (if present), and writing a managing
routine. Normally, the length of the code is a few pages.

A Sample Diffpack Simulator. For the nonlinear heat conduction equation (1), a Diffpack simulator with
name NlHeat1 may have the following class declaration:

class NlHeat1 : public FEM, public NonLinEqSolverUDC
{
protected:

Handle(GridFE) grid; // finite element grid
Handle(DegFreeFE) dof; // field <-> linear system mapping
Handle(FieldFE) u; // primary unknown
Handle(FieldFE) u_prev; // u at previous time step
Handle(TimePrm) tip; // time step etc
Handle(LinEqAdmFE) lineq; // linear system & solution
Handle(NonLinEqSolver) nlsolver;
// other internal data items ...

virtual void setIC(); // treating the initial condition
virtual void solveAtThisTimeStep(); // work per time step
virtual void makeAndSolveLinearSystem ();
virtual void integrands (ElmMatVec& elmat, const FiniteElement& fe);
virtual real lambda (real u); // nonlinear coefficient
// other protected member functions ...

public:
NlHeat1 ();

˜NlHeat1 () {}

virtual void define (MenuSystem& menu, int level = MAIN);
virtual void scan ();
virtual void solveProblem ();
// other public member functions ...

};

We notice from the above class declaration that NlHeat1 is a subclass of both FEM and
NonLinEqSolverUDC. The simulator class mainly offers three public member functions for carrying
out the needed operations. As mentioned earlier, the function pair define and scan provides a flexible
mechanism of giving values to all the needed parameters at runtime. Besides, the scan function is also
responsible for instantiating the internal data objects and binding handles to them. The main work of
simulation is done by the solveProblem function, whose implementation looks like:
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void NlHeat1:: solveProblem ()
{

tip->initTimeLoop();
setIC(); // enforce the initial condition
while(!tip->finished())
{
tip->increaseTime(); // update time for the next step
solveAtThisTimeStep (); // solve spatial problem by the FEM
*u_prev = *u; // update fields for next step
// auxiliary operations such as data storage etc.

}
}

As shown above, the computation per time step is done by the solveAtThisTimeStep function, whose
actual work is done in the libraries by the following command:

nlsolver->solve (); // solve nonlinear algebraic system

Re-implementing the two virtual generic member functions makeAndSolveLinearSystem and
integrands are mandatory. We list NlHeat1::makeAndSolveLinearSystem in the following,
while referring to [2, Ch. 4.2.1] for the details of NlHeat1::integrands.

void NlHeat1:: makeAndSolveLinearSystem ()
{

// some small preparation work
FEM::makeSystem (*dof, *lineq); // create linear system Ax=b
lineq->solve(); // invoke a linear system solver

}

Finally, we remark that the class name NlHeat1 indicates that this simple simulator can serve as a base
class for deriving new subclasses that treat more complex nonlinear heat conduction equations.

3 Two Parallelization Approaches

3.1 Grid Partitioning and Distributed Matrices and Vectors

Let us review the general numerical algorithm from Section 2.1. We notice that the most computation-
intensive operations are, viewed at the level of matrices and vectors, (i) calculation of element matrices
and vectors, and (ii) solution of the resulting linear system (4). Following the most flexible parallel
computer model of distributed memory, we start the incorporation of parallelism with partitioning the
global grid ) into a set of O smaller subgrids � )QP �SRPGT 0 , which are to be hosted by different processors of
a parallel computer. From now on, we will only consider numerical algorithms that use finite element
discretizations and iterative solvers for (4).

Partitioning a global finite element grid primarily concerns dividing all elements into subgroups. The
elements of the global finite element grid ) are partitioned to form a set of smaller subgrids ) P , UWVYXZVO , where O is typically the number of available processors. By a non-overlapping partition, we mean
that each element of ) belongs to only one of the subgrids. Element edges shared between neighboring
subgrids constitute the so-called internal boundaries. For subgrid )�P , we use [\P to denote its internal
boundary. We note that although every element of ) belongs to a single subgrid after a non-overlapping
partition, the nodes lying on the internal boundaries belong to multiple subgrids at the same time. In
Figure 1, the nodes marked with a circle denote such nodes.
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Figure 1: An example of internal boundary nodes that are shared between neighboring subgrids. The
figure shows a small region where three subgrids meet. Elements m 0 and m > belong to one subgrid, mon andm?p belong to another subgrid, while moq and msr belong to a third subgrid. Nodes marked with a circle are
internal boundary nodes.

When a non-overlapping partitioning of ) is ready, one subdomain is to be held by one processor. The
discretization of the target PDE on one processor is done in the same way as in the serial case, only that
the discretization is restricted to the assigned subdomain. The assembly of the local matrix and right-hand
side vector in (4) needs only contribution from all the elements belonging to its own subgrid. Therefore,
no inter-processor communication is necessary during the discretization. It is important to note that there
is no need to construct global matrices/vectors physically. It suffices to deal only with local matrices
and vectors that are associated with the subgrids. For solving a virtually existed global linear systemIKJ �tL by a parallel iterative solver, we can operate with only local matrices and vectors plus using
inter-processor communication, as Section 3.2 will show.

3.2 Linear Algebra Level Parallelization

3.2.1 Three Types of Parallel Linear Algebra Operations

During a parallel solution of (4), the global matrices and vectors (
I

, L , J ) do not need physical storage.
They can be represented virtually by the local matrices and vectors (

I P , L P , J P ), which are held by
the different processors. Iterative linear system solvers suit well for this situation, because it suffices to
parallelize the following three types of global linear algebra operations: (i) vector addition: u �
:wvyx ;
(ii) inner-product between two vectors: z �
:{�sx}|�~ � � ���?� ; (iii) matrix-vector product: u � I : .

Parallel Vector Addition. The parallel vector addition u �
:�v�x is straightforward and needs no inter-
processor communication. The only assumption is that values of : P and x P are correctly duplicated on
the internal boundary nodes on all the neighboring subdomains.

Parallel Inner-Product between Two Vectors. Computing the inner-product between two global vec-
tors, which are distributed on different processors, can start with computing the local computationz�P � ~ � � P E ��� P E � . However, the z�P values can not just be added together to produce z , because internal
boundary nodes are shared between multiple subgrids. The contribution from those internal boundary
nodes must be scaled accordingly. For this purpose, we denote by �3P the set of all the internal boundary
nodes of )#P . In addition, each internal boundary node has an integer count ��� , � � �WP , which is the total
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number of subgrids it belongs to, including ) P itself. Then, we can get the adjusted local result by�z�P � z�P ,���C����� ���
, U��� � P E � � P E � '

Thereafter, the correct global result of z �
:���x can be obtained by collecting all the adjusted local results
in the form of z �<~ RP �z�P . This is done by inter-processor communication in the form of an all-to-all
broadcast operation.

Parallel Matrix-Vector Product. We recall that a global matrix
I

is now represented collectively by the
local matrices

I P . These local matrices arise from a local finite element discretization. The rows of
I P

that correspond to the interior subgrid nodes are the same as those of
I

. A local matrix-vector productu P � I P : P will thus give correct values of u P for the interior subgrid nodes. However, the rows ofI P that correspond to the internal boundary nodes have only partially correct values. More specifically,
the correct value for an entry of u�P , which is associated with an internal boundary node, can only be ob-
tained by adding up contributions from all the neighboring subdomains. Take Figure 1 for instance, nodes
with global numbers 3,5,7 need contributions from two subdomains, while node with global number 1
should add together contributions from all the three subdomains. This requires inter-processor commu-
nication in the form of two and two neighboring subdomains exchange values on the relevant internal
boundary nodes.

3.2.2 Parallel Preconditioning

Preconditioners are often needed for speeding up iterative linear system solvers. Parallel linear solvers re-
quire parallel preconditioning operations. However, many standard preconditioners such as Gauss-Seidel
relaxation, and RILU are inherently serial algorithms. A simple remedy is to just let each processor run
the corresponding localized preconditioning operations, and then take some kind of average of the differ-
ent values associated with each internal boundary node from the neighboring subgrids. Of course, such a
remedy will normally result in weakened preconditioning effect. More powerful parallel preconditioners
such as the overlapping DD methods will therefore be studied in the next section.

3.3 Simulator Level Parallelization

3.3.1 The Mathematical Method of Overlapping DD

The starting point of the so-called overlapping DD methods [13, 14, 15] is a set of overlapping subgrids.
Based on the non-overlapping partition of ) from Section 3.1, we can expand the subgrids slightly, so
that every internal boundary node on [�P becomes an interior node of at least one neighboring subgrid.
We shall only consider the additive version of the overlapping DD methods, because this version is most
straightforward for parallelization. When solving a global linear system

IKJ ��L that is distributed on a
set of overlapping subgrids, the additive DD method constitutes an iterative process. In iteration numberD v U , when

J A is already computed and exists distributedly as (
J A 0 , J A > , '?'?' , J A R ), the additive DD method

proceeds by

J A�� 0 � J A v R� PGT 0\���P I .10P � P ��L ,�IKJ A ��� (5)
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where the restriction matrix � P , which contains only ones and zeros, is used for “clipping out” the entries
of a global vector that are associated with subgrid )+P . The transpose matrix � � P is for interpolating a sub-
grid solution to a global solution. Parallelism is inherent with the above method because the subdomain
solves

I .10P can be carried out completely independently. We also mention that since solutions
J A andJ A�� 0 are always distributed, there is no need to physically form � P and � � P in an actual implementation;

they are only needed in (5) for the mathematical correctness. To use (5) as a preconditioner, we just need
to run one iteration with

J�F � & for a given right-hand side vector.

3.3.2 The Simulator-Parallel Approach

There are two more reasons for our interest in the additive DD method (5), besides its inherent paral-
lelism. The first reason is that such a DD solver/preconditioner, when coupled with coarse grid correc-
tions (see [13, 14, 15]), normally has very good convergence properties. The second reason lies in the
programming respect. We notice that the subdomain problems of (5) arise from discretizing the same
PDE as the original global problem. This means that we should, in principle, be able to re-use an ex-
isting serial PDE simulator, which is designed for the original PDE, also as the subdomain solver for
each subdomain. Of course, an administrator of the subdomain solvers on the global level has to be
implemented somehow, whereas the needed inter-processor communication can be handled in the same
way as in Section 3.2. Our goal is to implement the global administrator and the needed communication
functionality in a generic fashion, independent of specific PDEs. We call this generic approach to pro-
gramming parallel DD solvers/preconditioners as simulator-parallel [17]. In Section 4.3, we will show
how object-oriented programming helps building a generic implementation framework.

4 Object-Oriented Implementation of the Parallelization Approaches

We present in this section a small object-oriented library that implements the two parallelization ap-
proaches. This parallel “toolbox” allows the user to parallelize serial Diffpack simulators in a flexible
and structured way.

4.1 Coupling with the Serial Diffpack Libraries

One of our objectives when designing the parallel toolbox is to keep the huge serial libraries of Diff-
pack unchanged to as large extent as possible. The only new class that we have introduced into the
serial Diffpack libraries is a light-weight interface class with name SubdCommAdm (subdomain commu-
nication administrator). This class declares functions for updating global and interior boundary values
in distributed vectors. It also declares parallelized versions of basic matrix-vector operations, including
matrix-vector products, and inner-products.

All the member functions of class SubdCommAdm are declared as virtual and have empty implemen-
tation. Therefore, SubdCommAdm only serves as a pure interface class, defining the name and syntax of
different functions for inter-processor communication. Various subclasses of SubdCommAdm implement,
e.g., the parallel matrix-vector operations according to a specific type of data distribution.

It suffices for the rest of the serial Diffpack libraries to only know how inter-processor communication
can be invoked, and this information is provided by class SubdCommAdm. Hence, in classes that involve
matrix-vector operations we include a SubdCommAdm pointer (handle). If this pointer is non-zero, i.e. the
computations are performed in parallel, the appropriate matrix-vector operation is called through the

10
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SubdCommAdm object. Otherwise, i.e. in serial calculations, we just issue a standard matrix-vector opera-
tion. In this way, the original serial Diffpack libraries can support parallel linear algebra through modest
modifications. Since the parallel computing and communication strategy is hidden by the SubdCommAdm
class, the library code is free of, e.g., long low-level MPI calls, which is the common result of paralleliz-
ing simulation codes.

4.2 Functionality for Linear Algebra Level Parallelization

Two main tasks of the parallel toolbox are to provide Diffpack users with different grid partitioning
methods and several high-level inter-processor communication functions. In addition, the toolbox also
implements parallel versions of some of Diffpack’s most frequently used linear algebra operations.

A Hierarchy of Grid Partitioning Methods. Class GridPart is a generic grid partitioner. Its sub-
classes implement specific methods for dividing a grid into subgrids: GridPartUnstruct han-
dles unstructured grids, GridPartUniform handles uniform rectangular or box-shaped grids, and
GridPartFileSource reads subgrid specifications from a set of grid files.

The Main Control Class. We recall that SubdCommAdm is a pure interface class; all its inter-processor
communication functions need to be re-implemented in a concrete subclass. For this purpose, we have
created GridPartAdm as a concrete subclass of SubdCommAdm in the parallel toolbox. Thus, object-
oriented programming sets SubdCommAdm as the formal connection between the existing serial Diffpack
libraries and the parallel toolbox, while GridPartAdm is the actual working unit. It should also be
mentioned that class GridPartAdm not only re-implements the different inter-processor communica-
tion functions, but at the same time provides a unified access to the different methods offered by the
GridPart hierarchy. The member function prepareSubgrids is designed for this purpose. The rela-
tionship between SubdCommAdm, GridPartAdm, and GridPart is depicted in Figure 2. Moreover, a
member function named prepareCommunication is designed for building up the internal data struc-
ture needed for later communication operations inside an object of SubdCommAdm. Therefore, it suffices
for a user to only work with GridPartAdm when parallelizing of a serial Diffpack simulator.

SubdCommAdm

GridPartAdm

GridPartFileSource

GridPart

GridPartUnstructured

GridPartUniform

Figure 2: The relationship between SubdCommAdm, GridPartAdm, and GridPart. Note that the solid
arrows indicate the ”is-a” relationship, while the dashed arrows indicates the ”has-a” relationship.
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4.3 A Generic Implementation Framework for Parallel Overlapping DD Methods

As we have mentioned in Section 3.3.2, an existing serial simulator should be considered for re-use as
the subdomain solver in a parallel overlapping DD solver/preconditioner. We want an implementation
framework for parallel overlapping DD methods, where the non-PDE-specific components are provided
as generic C++ library classes. In such a framework, object-oriented programming should be used to
simplify the coding effort of a user, such as slight extension/modification of the existing serial simulator
to fit with the generic components of the implementation framework. We present in the following a
generic implementation framework made up of three parts: the subdomain solvers, a communication
part, and a global administrator.

4.3.1 Subdomain Solvers

A typical Diffpack PDE simulator has functionality for generating the discrete equations on a grid and
solving the resulting linear system. In order for such an existing Diffpack PDE simulator to be accepted
by the implementation framework, it is important that the simulator is first ”wrapped up” within a
generic standard interface recognizable by the other generic components. We have therefore designed
class SubdomainFEMSolver as a generic subdomain solver. A concrete subdomain solver must be de-
rived as a subclass of both SubdomainFEMSolver and the existing simulator. The purpose of class
SubdomainFEMSolver is to allow different components of the implementation framework to access
the subdomain data structure and invoke the functions related to the subdomain solves. The main content
of class SubdomainFEMSolver consists of a set of data object handles and virtual member functions
with standardized names. The virtual member functions have all been given a default implementation.
The only exception is member function initSolField, which must be explicitly re-implemented in a
derived subclass. This function is used to bind the generic data handles of SubdomainFEMSolver to
the concrete data objects in the existing simulator.

4.3.2 The Communication Part

Data exchange between neighboring subdomains within the overlapping regions is handled by class
CommunicatorFEMSP in the generic implementation framework. This class is derived as a subclass of
GridPartAdm.

4.3.3 The Global Administrator

The global administrator of the implementation framework is mainly constituted by two generic classes.
The function of the global administrator includes construction of the subdomain solvers and the commu-
nication part, plus controlling all the operations during each DD iteration.

Class ParaPDESolver. Overlapping DD methods can work either as stand-alone iterative solvers or
as preconditioners for Krylov subspace methods. By using object-oriented programming, we wish to
inject this flexibility into the design of the global administrator. We have therefore designed class
ParaPDESolver to represent a generic DD method.Two subclasses have also been derived from
ParaPDESolver, where the first subclass BasicDDSolver implements an overlapping DD method
to be used as a stand-alone iterative solver, and the second subclass KrylovDDSolver implements an
overlapping DD preconditioner.

12
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Class SPAdmUDC. The other major class of the global administrator is SPAdmUDC, which controls
parameter input and the creation of a desired DD solver (i.e., an object of either BasicDDSolver or
KrylovDDSolver). In addition, class SPAdmUDC also controls the communication part and the subdo-
main solvers. We remark that “UDC” (user-defined code) is used to indicate that the user has the possibil-
ity of re-implementing SPAdmUDC’s member functions and introducing new functions when he derives a
concrete new subclass.

Class SPAdmUDC has one member function with name createLocalSolver that must be re-
implemented in a derived subclass. The purpose of this member function is to instantiate a local solver
object on every subdomain. Normally, this is just a one-line call that creates an object of the modified
PDE simulator (subclass of SubdomainFEMSolver). The advantage of having a simulator available as
an object, i.e. a variable in the program, should be obvious in a setting where we need many simulators,
each working on a subdomain.

4.3.4 Coding Effort

When using the framework for implementing an overlapping DD method, the user primarily needs to
carry out a coding task in the form of deriving two small-size C++ subclasses. One C++ subclass (from
SubdomainFEMSolver) is for modifying and extending an existing PDE simulator so that it can work
as a subdomain solver, whereas the other C++ subclass (from SPAdmUDC) is for controlling the global
calculation and coupling the subdomain solver with the other components of the implementation frame-
work.

5 Parallelizing Serial Simulators

In this section, we will apply the two parallelization approaches to the serial Diffpack nonlinear heat
conduction simulator NlHeat1 described in Section 2.3.

5.1 Linear Algebra Level Parallelization

This parallelization approach requires only a small adjustment of the serial source code of the NlHeat1
simulator. Basically, the NlHeat1 class must be extended with a GridPartAdm object. All the pro-
grammer has to do is including the GridPartAdm header file, declaring a GridPartAdm pointer
(handle), adding a GridPartAdm submenu to the menu system, initializing the GridPartAdm object
from the menu system, and finally attaching the GridPartAdm object to the linear system toolbox
(LinEqAdmFE). The linear system and solver are thus notified about parallel computing. Iterative solvers,
like Krylov methods for (non-)symmetric matrix system, will therefore run in parallel. We refer to [18]
for more details.

5.2 Simulator Level Parallelization

The above parallelization process is very simple and user friendly. However, the only disadvantage with
the resulting parallel simulator is the absence of a parallel preconditioner. In case the need for an ef-
ficient parallel preconditioner arises, one should consider parallelizing NlHeat1 using the DD-based
parallelization approach. In this case, we need to develop two new classes:
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class SubdomainNlHeat1 : public SubdomainFEMSolver, public NlHeat1

class NlHeat1DD : public SPAdmUDC, public NonLinEqSolverUDC

Class SubdomainNlHeat1 works as solver on a subdomain, whereas class NlHeat1DD administers
the global DD iterations or a Krylov solver with DD as preconditioner. The coding effort consists of
re-implementing a few virtual member functions of SubdomainFEMSolver and SPAdmUDC. In addi-
tion, class NlHeat1DD needs to implement its own solveProblem, solveAtThisTimeStep, and
makeAndSolveLinearSystem (see Section 2.3). This is for shifting the control of computation from
NlHeat1 to NlHeat1DD. Reference [19] provides more details and examples.

6 Concluding Remarks

Object-oriented programming is a powerful tool for developing flexible and re-usable serial PDE soft-
ware libraries. We have explained in this paper that a serial library, having a suitable object-oriented de-
sign, can easily be parallelized and equipped with tools supporting rapid parallelization of serial simula-
tors. Actually, our programming paradigm allows development of computational mechanics applications
in Diffpack without paying attention to parallel computing. Thus, the application developer can focus on
the physical problem being solved, the numerics, and a thorough verification of the code. When the serial
code works well, it can be extended for parallel computing by a few additional lines or by adding two
extra small classes. This stepwise program development reduces the debugging time of parallel codes
significantly.

Of course, the ease of parallelization described here is closely connected to the chosen methods for par-
allel computing. The linear algebra level approach requires the application developer to rely on parallel
finite element assembly and parallel Krylov solvers, with suboptimal parallel preconditioners. The ad-
vantage is that a serial simulator can be parallelized with about 10 new statements. The disadvantage
is the efficiency of the numerics. A better approach from an efficiency point of view is to apply DD
as preconditioner (or stand-alone solver). This second parallelization strategy requires somewhat more
programming by the application developer. The performance of the approach is problem dependent, but
our experience shows that close-to-optimal speed-up results are often obtained.

The outlined parallelization approaches have been successfully applied in the parallelization of numerous
Diffpack simulators, including many computational mechanics applications. We have, for example, cre-
ated parallel solvers for linear thermo-elasticity, the incompressible Navier-Stokes equations, two-phase
porous media flow, and fully 3D nonlinear water waves, see [20, 21, 22, 23, 24].
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Birkhäuser (1997).

[7] H. P. Langtangen, A. M. Bruaset, E. Quak, eds., Advances in Software Tools for Scientific Comput-
ing, Springer (1999).

[8] M. Thuné, E. Mossberg, P. Olsson, J. Rantakokko, K. Åhlander, K. Otto, Object-oriented construc-
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